博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
CS294-112 深度强化学习 秋季学期(伯克利)NO.1 Introduction NO.2 Supervised learning and imitation...
阅读量:5253 次
发布时间:2019-06-14

本文共 1240 字,大约阅读时间需要 4 分钟。

 

前面弄错了,应该看2017的秋季课,结果看了春季课了。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       

 

 

 

 

 

 

  neural network control a virtual robot, by imitating human motion

 

 

  

 

 

Domain shift cause the failure of supervised learning in imitation learning.

 

 

 

 

 

 

 

human expert said "turn left!!!" (step 3)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

we don't want the average of the two expected behaviors. when the actions are discrete, the model works well.

 

  however, this is the gaussian output of continuous actions

 

 

 

 solution:

 

 

 

 

 

 

 

 

 

 

add a noise input here.

the defect is implicit density model is harder to train.

recommend to look at VAE and GAN and stan??? variational gradient descent, which are three methods to train implicit density models

upside: capable to mimic any form of function

downside: much more complex to implement

 

 

 

the second net is conditionally sampling from the first net

 

 

 

 

 

 

 

 It's time for case study

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

this is a human with three go-pro on his head...

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                

 

 

 

 

 

 

 

 

 

 

 

 

 

 

robot: 300 bucks

game control: 100 bucks

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 c for cost

r for reward (the negative of cost)

 

 

 

 

 you know there maybe a little bit culture differences here. so like americans like to believe life is for reward, but maybe russians behavior more pessimistically. 

HAhahahahahahaha....

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  reinforcement learning in CS is exactly the same as optimal control in dynamic programming

转载于:https://www.cnblogs.com/ecoflex/p/9083688.html

你可能感兴趣的文章
android一些细节问题
查看>>
KDESVN中commit时出现containing working copy admin area is missing错误提示
查看>>
利用AOP写2PC框架(二)
查看>>
【动态规划】skiing
查看>>
java定时器的使用(Timer)
查看>>
ef codefirst VS里修改数据表结构后更新到数据库
查看>>
boost 同步定时器
查看>>
[ROS] Chinese MOOC || Chapter-4.4 Action
查看>>
简单的数据库操作
查看>>
iOS-解决iOS8及以上设置applicationIconBadgeNumber报错的问题
查看>>
亡灵序曲-The Dawn
查看>>
Redmine
查看>>
帧的最小长度 CSMA/CD
查看>>
xib文件加载后设置frame无效问题
查看>>
编程算法 - 左旋转字符串 代码(C)
查看>>
IOS解析XML
查看>>
Python3多线程爬取meizitu的图片
查看>>
树状数组及其他特别简单的扩展
查看>>
zookeeper适用场景:分布式锁实现
查看>>
110104_LC-Display(液晶显示屏)
查看>>